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Note 

On Computing Electrostatic Field Lines for 
Two-Dimensional Vacuum Fields in 

the Neighborhood of Localized Regions of Charge 

In the course of scientific research, the clear presentation of results can be just as 
important as the results themselves. This is certainly true with computational 
physics which is characterized by large codes producing many numbers. For exam- 
ple, electric fields are usually depicted by vector plots or contours of equal poten- 
tials. The potential function is relatively easy to compute, and its level curves are 
easy to plot with most graphics packages. Frequently, however, the electric field 
lines give a clearer description of the physics of the system. 

For many systems, equations for the field lines can be derived analytically [ 1, 21 
and the results can be plotted directly [3]. However, if an analytic solution does 
not exist, a computational one must be found. Whittaker developed one technique 
based on plotting trajectories in fields [4]. His method is the basis for the 
STRMLN field line plotting routine in the graphics package supported by the 
National Center for Atmospheric Research [S]. It has a major drawback in that 
the density of field lines does not indicate the strength of the fields. Here, we present 
a method for obtaining electric field lines such that the density of field lines is 
directly related to the strength of the field. To do this, a function is found with level 
curves coincident with the electric field. The level curves of this function can then 
be plotted with any standard contour plotting routine. 

Given the potential d of an electrostatic system varying in only two dimensions 
(x - y), we can construct field lines. To do this, we find another function rl/, the 
level curves of which: (1) are everywhere perpendicular to the level curves of & 
and (2) lie in the (x - y) plane. Thus the level curves of $ are the field lines. 
Equivalently, we find $ such that the gradient of $ is everywhere perpendicular to 
the gradient of 4, and the gradient lies in the (x - y) plane. Thus, 

vI+b=v$hxz. (1) 

Note that Eq. (1) implies that 4 and II/ satisfy the Cauchy-Riemann equations. 
From this point of view, it can also be shown that 4 and $ are orthogonal and 
therefore, the contours of constant $ (commonly called the stream function) 
represents the field lines [ 1,2]. 

Since E = -VIP the magnitude of the electric field can be deduced from the den- 
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sity of lines on a contour plot of 4 if these contours represent regular increments 
in 4. The same can be said for $. From Eq. (1 ), 

so again, the density of field lines indicates the strength of the field with the field 
directed along the lines rather than normal to them. 

We have V+, but to find IJ we must integrate. For any path, s in the x- y plane 

where s is the unit vector along the path at every point. From Eq. (1) 

Note that z x s = -n, where n is normal to curve s pointing towards the right while 
traversing s. Thus, 

a+ -=-V4.n or as I+&)-$(sl)= -J’S*V&nds. 
s1 

(2) 

Clearly, II/, like 0, is arbitrary to within an additive constant. 
The integral of @/as around any closed path, S, is zero if the path does not 

enclose a net charge. However, this is not so when the path does enclose a net 
charge. From Gauss’ law (modified to two dimensions assuming no variation in z), 
the integral around a closed path is 
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FIG. 1. Field lines for the two cylinder case. The lines were computed by integrating Eq. (2) 
regard for the branch cuts. 
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FIG. 2. The path of integration used for the field line computations of Fig. 1. 
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where A is the line charge enclosed in the loop. Thus $ is not a single-valued func- 
tion in a domain enclosing localized regions of charge. To calculate $ from Eq. (2) 
we will be forced to integrate around the charges; + will be discontinuous along the 
line where these paths of integration meet. This line of discontinuity is called a 
branch cut. 

Figure 1 shows an example of a branch cut due to computing II/ by simple 
integration. In this case we have two infinite, conducting cylinders with opposite 
line charge ( +A) in free space. The potential for this case is given by 

(x + d)2 + y2 
4(x, Y) = i ln (x _ d)2 + y2’ 

where d2 = r2 - a2, r being half the distance between the cylinders and a being the 
radius of the cylinders. 

The integration started in the lower left corner and proceeded as shown in Fig. 2. 
The paths of integration meet in two places as shown by the dotted lines. There is 
a discontinuity in rj along the first line but II/ is continuous along the second. This 
is because the loop around the left conductor encloses a net charge while the loop 
around both conductors encloses no net charge. 
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FIG. 3. Field lines using alternate integration path. The equipotential contours 
imposed to show orthogonality. 
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FIG. 4. Alternate integration path. 

To make a nicer picture, one simply needs to move the branch cuts to different 
locations. Figure 3 shows the result of a different path of integration. The potential 
contours have been superimposed to show that $ is indeed orthogonal to 4. For 
this case, the path of integration was chosen judiciously to place the branch cuts 
along a line of symmetry and to remove them from the center of the figure to make 
them much less noticeable (Fig. 4). 

More complicated situations can be solved by more complicated paths. Figure 5 
shows the field lines for a quadrupole system. In this case, the boundary is a 
conducting wall and the potential was calculated by another program. 

To remove all branch cuts from the center of the figure, the integration was 
done in a spiral pattern (Fig. 6). The prescription is to start in the center with 
$ = $0 (arbitrarily set to 0), then traverse the spiral. At each point, compute + by 
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FIG. 5. Quadrupole system in a conducting cylinder. Here also, the branch 
to the outside of the system. 

cuts have moved 
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FIG. 6. Integration path for quadrupole system. The computational grid was traversed in a spiral. 
However, since the integration can not pass through the conductors, the direction of integration is not 
always along the spiral path. This will produce branch cuts, one of which is shown by the dotted lines. 
These cuts can be moved by restricting the integration. 

integrating along the spiral from the previous point. For example, II/ at B is 
computed by integrating Eq. (2) from A to B. 

Inevitably, the spiral path will cross conductors and regions exterior to the 
system. In these cases, the value of II/ at the first point which reenters the system 
is calculated from another previously computed grid point. For example, $ at D is 
calculated by integrating from point C. 

The result is that even though the grid is traversed in a spiral pattern, the path 
to a particular point will not necessarily be along the spiral. The full paths for two 
points, E and F, are shown in Fig. 6. These paths surround a conductor so they are 
on opposite sides of a branch cut. The branch cut is shown as a dotted line. 

The branch cuts are moved to more aesthetic locations by not allowing the 
integration to pass predetermined branch cuts, one of which is shown. This forces 
the position of the branch cut but leaves II/ not computed in certain regions. One 
such region is shown by the hashed area. These points are computed by integrating 
backwards after the spiral is completed, giving the final result shown in Fig. 5. 

These techniques can be used to calculate and plot field lines in many complex 
geometries which include localized regions of charge. Enveloped regions of charge 
necessarily cause branch cuts in the values of $ but these branch cuts can be moved 
by changing the paths of integration. 
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